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ABSTRACT 

We describe a method for recognizing surface-lying  ordnance  in test  ranges  using  stereo 
range  information  and  image edge maps.  This  method is to be used by an  unmanned 
ground vehicle (UGV) surveying the  test  range for autonomous  clearing of ordnance. 
We concentrate on a particular  type of cylindrical  ordnance (BLU-97) in  current usage 
in U.S. military  test ranges. In  order to  locate instances of the  ordnance, we employ a 
stereo  pair of cameras  to  be  mounted  on  top of a UGV. Parallel  segments  corresponding 
to  the occluding  contours of the  ordnance  are  detected in the  imagery using robust  and 
efficient model  extraction techniques. The  stereo range data is used to  adaptively select 
the local  scale for edge detection  and  to place  constraints on the  search  space for the 
parallel  segment  extraction.  Initial  tests  indicate that robust  recognition is possible  in 
near  real-time  with a low rate of false positives. 

Keywords: Ordnance recognition, stereo vision, edge detection,  adaptive  scale  selection, 
parallel  line  extraction,  cylinder  detection,  autonomous  munitions  clearance 

1. INTRODUCTION 

Military  test  ranges  containing  unexploded  ordnance  due  to live-fire testing  and  training 
exercises have become a significant safety  problem  in  many  locations. I t  has been esti- 
mated  that over 800 locations and 11 million  acres in the United States  alone have been 
potentially  contaminated  with  unexploded ordnance.' The cleanup of these  sites  has be- 
come of particular  importance in this  era of base  realignment and closure. The  estimated 
cleanup of sites  in  this category  alone  is over $4 billion. Furthermore,  cleanup of such 
sites by human technicians is dangerous and  the loss of human lives adds  immeasurably 
to  the cost. 

We are developing an  ordnance  recognition  method for use on an  unmanned  ground 
vehicle (UGV) in  conjunction  with the Rough  Terrain Surface Munitions  Clearance 
project at Wright  Laboratory,  Tyndall  Air Force Base. The envisioned system  consists 
of an  unmanned  all-terrain vehicle with  on-board stereo  cameras,  in  addition to verifica- 
tion  and  neutralization devices. The vehicle will either survey the  test  range, using the 
cameras  as a pushbroom-like detection  device, or move to a designated  observation  point 
and sweep the  area of interest by panning  and  tilting  the cameras. This  paper describes 
a method for recognizing surface-lying ordnance using such a system. 

Further  author information: http://robotics.jpl.nasa.gov/people/olson/homepage.html 
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Figure 1. Image of BLU-97 ordnance  acquired at a Nellis Air Force Base test  range. 

We concentrate  on  the recognition of BLU-97 ordnance, which is in  current  usage  in 
U.S. military  test  ranges  (Figure 1). The  body of this  type of ordnance is cylindrical  in 
shape,  approximately 20 centimeters  long,  and  has a 6 centimeter diameter.  Our  strategy 
is thus  to seek cylindrical  objects of the  appropriate size in visual imagery. In  order for 
the  system to  be effective in this  application, we estimate  that  the  system  should  be  able 
to recognize ordnance at least 10 meters  from  the vehicle and that a 5 meter  swath  width 
at this  range is desirable  (implying a lens with  approximately 30" field-of-view), as well 
as a latency below 5 seconds. The 5 meter  swath  width implies that a frontal view of the 
ordnance  at  the  maximum range  in a 500 x 500 image yields a 20 pixel long strip  in  the 
image  and  non-frontal views will be smaller. 

The  method  that we use to  detect  the  ordnance is based on finding  pairs of parallel 
segments  in the image edge map.  These  segments  correspond to  the occluding contours 
of the cylindrical body of the  ordnance. We first smooth  the image and  perform edge 
detection  adaptively,  using  stereo  range  information2 to select the  appropriate  scale for 
smoothing  and  the  appropriate  thresholds for  edge  detection at each pixel.3 Pairs of par- 
allel  segments are  then  detected using efficient and  robust model extraction  technique^.^ 
These techniques sample a series of oriented  edge pixels from the edge map of image. For 
each  sampled edge pixel, pose space  clustering  techniques  are used to  determine if the 
pixel belongs to some  pair of parallel  segments in a local  neighborhood  in the  image edge 
map.  Robust  detection  can  be achieved after a relatively  small  number of edge  pixels 
have been sampled. 

Constraints  on  the  distance  to each sampled pixel in  the image are derived  using the 
stereo  range  information  and these constraints  are used in the  detection process to  limit 
the search space  that is required  in each trial  to detect  the  ordnance, if it is  present. 
These  constraints reduce both  the likelihood of finding false positive  instances and  the 
amount of computation required by the search process. 

This  method  has been  implemented  on a workstation  and  empirical  experiments in- 
dicate  that we can achieve a high rate of success  in finding the  ordnance  with a low 



false alarm  rate  through  the use of these  techniques. It is expected that a near-real  time 
implementation of these  techniques is realizable  with off-the-shelf computing  hardware. 

2. STEREO RANGE DATA 

The use of stereo  range data is crucial to  the ordnance  recognition  system that we have 
developed. We use this  information for two  purposes: 

1. It allows us  to select the  appropriate scale at each location  in  the image  for smooth- 
ing  and edge detection. 

2. It  allows us  to place bounds  on  the size of the  ordnance at any  location  in the  image, 
thus  reducing  both  the search  space and  the  number of false positives  found. 

The techniques that we use to  compute  the  stereo  range  data have been described 
el~ewhere.~,~  The  important points  are  summarized here. 

An off-line step, where the  stereo  camera rig is calibrated  must first be  performed. 
We use a camera  model  that allows arbitrary affine transformation of the  image  plane6 
and  that  has been  extended to include radial lens di~tor t ion.~  The remainder of the 
method is performed on-line. 

At run-time, each image is first warped to remove the lens distortion  and  the  images 
are rectified so that  the corresponding  scan-lines yield corresponding  epipolar  lines in  the 
image.  The  disparity between the left and  right images is measured for each  pixel by 
minimizing the sum-of-squared-difference (SSD) measure of a window around  the pixel 
in  the  Laplacian of the  image. Subpixel  disparity  estimates  are  computed  using  parabolic 
interpolation  on  the SSD values neighboring the  minimum.  Outliers  are removed through 
consistency checking and  smoothing is performed over a 3 x 3  window to reduce noise. 
Finally,  the  coordinates of each pixel are  computed using  triangulation. 

Note that  not every pixel is assigned a range  with  this  method.  There  are a variety 
of factors  that  result in  some pixels not  being assigned a range  including  occlusion, 
window effects, finite  disparity  limits,  and  outliers. Despite this  problem, we desire a 
range  estimate at each pixel in the image that is designated  an edge in order to perform 
ordnance  detection efficiently. To resolve this problem, we propagate  the  range values 
from  neighboring pixels using a simple method  that prefers neighbors to  the left  or right 
to those  above or below. 

Figure 2 shows an example of the  range  data  computed using  these  techniques. A real- 
time  implementation of these  techniques runs at approximately two frames per ~ e c o n d . ~  

3. VARIABLE-SCALE EDGE DETECTION GUIDED BY 
STEREOSCOPY 

In  order  to  detect  the  ordnance, we search for parallel  segments  in the image  edge map 
of the left image of the stereo  pair. It is thus crucial to  extract  the edges corresponding 
to  the ordnance  in a robust  manner. It is also  desirable to keep the frequency of clutter 



Figure 2. Range  data  extracted from a stereo  pair. (a) Left image of a stereo  pair.  (b) 
Distance  from the camera  mapped  into  gray values. Black pixels indicate no valid range 
data. (c)  Range  map  after filling unknown values with  estimates. 

edges as low as possible, so that  there is less data  that needs to be processed during 
detection  and so that  the probability of a false positive  detection is small.  Unfortunately, 
the  terrain of interest  often yields cluttered edge maps  due to  the presence of rocks, 
textured soil, and  other  phenomena. To alleviate  this problem, we perform smoothing 
adaptively,  such that  the scale of the  filter varies  with the range  from the  camera  and is 
tuned  to  the  approximate size of the  ordnance  at  that range. 

Our  approach  to performing adaptive  smoothing is to filter the image at multiple 
scales and  then  interpolate  the response for each pixel at the  appropriate scale given by 
the  range  data. Since we adapt  the  Canny edge detector' for this  application, we use 
Gaussian  derivative  filters to perform  the  smoothing  (and  differentiation) of the  image. 
If the response at each pixel is  appropriately normalized, the  resulting image can  be 
processed as in  the  typical edge detector. For the  Canny edge detector,  this is performed 
through  non-maxima  suppression  and a hysteresis  thresholding  procedure. 

We must  first select an  appropriate  set of scales to use. Based on the size of the 
ordnance  and  the ranges over which we desire accurate recognition  in the  test imagery, 
we have chosen to work with scales in the range 0.8 B 5 3.2, and we perform  smoothing 
at three scales (al = 0 . 8 , ~ ~  = 1.6, a3 = 3.2) in  order to interpolate  any scale  in the  range 
accurately.  At each scale, we filter with  the  Gaussian derivative  in both x and y. Each . 

image is thus convolved with 6 filters. 

Now, we must  interpolate  the  gradient at each pixel for the  appropriate scale given 
by the  stereo  range  information. Since there  is  an inverse linear  relationship  between the 
range  to  an  object  and  its scale in  the  image, we map  the range  information  into a scale 
for smoothing  and edge detection  using: 

o ( x ,  Y >  = K/R(x ,  Y L  (1) 



where R(x ,  y) is the  range  estimate given by the stereo processing at the pixel, and K is 
a constant  determined by the size of the  object of interest. For this case, we use K = 4. 

We approximate  the correct  response at each pixel using  parabolic interpolation (sep- 
arately for x and y) in  the In c domain.  Let F,(x, y) be  the desired  response at ( x ,  y) 
for the scale 0. In  determining  the  equation  that yields the  appropriate  response, it is 
useful to perform a coordinate  transform  such  that z = log, y. For 01 = 502 = 403, 

this yields z1 = -1, z2 = 0, and 2 3  = 1. With  this  transformation it is simple to  show 
that: 

1 1 

1 

Following the variable-scale smoothing described  above, we proceed with  Canny’s edge 
detection  method*  on  the  smoothed  image.  This technique  computes the  image  gradients 
over the  image in the x- and  y-directions  in  order to determine  the  orientation  and 
magnitude of the  gradient at each pixel. Note, however, that if the  gradient  magnitudes 
are  to be comparable, we must  normalize them.  This can be easily be seen by noticing 
that  the response of a step edge to a Gaussian derivative filter varies with  the scale 
of the filter. A 1-dimensional  Gaussian  derivative perfectly aligned with a step edge 
yields  a  response proportional  to $. To correct  this problem, we normalize the gradient 
magnitude at each  pixel by multiplying by o ( x ,  y). 

Finally,  non-maxima suppression is performed and  the edges are  thresholded  using 
hysteresis  thresholding. We determine  the hysteresis  thresholds  adaptively through ex- 
amination of the  histogram of gradient  magnitudes. 

Figure 3 shows an example of the edge detection  techniques and a comparison  with a 
non-adaptive  version of the edge detector. For this image, the variable  scale smoothing 
was performed over the range 0.8 5 o 5 3.2, while the non-adaptive version used a scale 
of 0 = 1.6. Note  that, when variable-scale smoothing was used,  more of the ordnance 
edges were detected  and  with  greater  accuracy, while less texture edges are  found on the 
ground. 

In  addition to  its use in  performing  edge detection, stereoscopy is helpful in  determin- 
ing edge salience. Shorter edges that  are  detected at a larger  distance  are  more likely to 
correspond to  salient world edges than edges at close range that  appear  to  be long  due to 
perspective effects. We use the  summed  gradient  magnitude over the  length of the edge 
and  the local straightness of the edge as salience  riter ria,^ although  many  other salience 
measures  could  be  used.g 



Figure 3. Edges are  detected using  variable  scale smoothing  and  detection. (a) Example 
grey-scale image. (b) Edges detected  with variable scale smoothing.  (c)  Edges  detected 
with  typical  Canny edge detector. 

4. DETECTING PARALLEL SEGMENTS 

Once  the edges have been detected, we seek the pairs of parallel edge segments that 
correspond to  the occluding  contours of the cylindrical  ordnance  body. The  algorithm 
that we use to  detect  these  segments is an  instance of the  RUDR ~ a r a d i g m . ~  RUDR is 
a general method  to  perform  model  extraction  and  fitting  that  has been  previously  used 
to perform  curve  detection," object recognition," and  robust regression.12 The  main 
components of the  paradigm  are  the decomposition of the problem into  many  smaller 
subproblems,  the use of randomization to limit the number of subproblems that  must  be 
examined,  and  the use of pose space  analysis  techniques to solve each subproblem. 

The first step in  applying  the  RUDR  paradigm  to a particular problem is to  determine 
the model  and  the  type of data features that will be  used. For the detection of parallel 
lines,  our  model is simply a parameterization of the parallel  lines. We use the ( p ,  8) 
parameterization for the lower line: 

p = zcos8 + gsin8, (7) 

along  with a parameter, d ,  describing the  perpendicular  distance  to  the  upper line. The 
edge pixels detected  as  described above (along  with  the image  gradients at the  same 
locations)  are used as  our  data  features. 

In  the noiseless case,  two  oriented edge pixels overconstrain the position of a pair of 
parallel lines (assuming  one pixel lies on each line).  When noise is considered, a subset of 
these  pairs of pixels will be  consistent  with  belonging to parallel  segments. A pose space 
technique  (such  as  variants of the Hough transform) could detect  the parallel segments 
by computing  the  parallel line  positions given by each pair of edge pixels (eliminating 
those  pairs  that  not consistent with  any  pair of parallel lines) in the image and seeking 
parameters in the  space of parallel  lines, ( p ,  8, d ) ,  that  are consistent with  many of the 



pairs of pixels. The RUDR paradigm uses similar  ideas, except that  the problem is divided 
into  many  smaller  subproblems by considering  (in  this case) a sequence of distinguished 
pixek from  among  the edge pixels. Each distinguished pixel is simply a randomly chosen 
edge  pixel that has been chosen to  constrain  the  current  subproblem.  Each  subproblem 
is constrained  to examine  only  those pairs of pixels that include the distinguished  pixel. 
It has  been shown that,  with precise pose  space  analysis  techniques,  this  decomposition 
of the problem yields the  same  results as standard Hough transform  techniques if each 
possible  distinguished pixel is e ~ a m i n e d . ~  

Analysis has shown that  an  arbitrarily low probability of failure y can  be achieved 
through  the  examination of approximately distinguished  pixels, where f is the 
minimum  fraction of the  data  features  that must belong to  the parallel  lines to  detect 
t hem  robu~ t ly .~  Each  subproblem is examined  in O ( n )  time, where n is the number of 
data  features,  as discussed below. 

Now, for each  distinguished pixel that is  examined, we must  determine if it belongs 
to some  pair of parallel  lines  in the  image edge data. We assume that  the localization 
error for each edge pixel can  be  bounded by some  small  error and we have empirically 
chosen a maximum allowable error  in the position of each edge pixel to be f pixel and 
the  maximum allowable error  in  the  orientation of each edge pixel to be &. 

Our  strategy is to project  the  space of parameter positions (if any) that  are consistent 
(up  to  the bounded  error)  with each pair of oriented pixels that include  the  distinguished 
pixel onto  the manifold in  the  parameter  space  that is consistent with  the  distinguished 
pixel in the errorless case. If many of these projections  overlap at some  point  on  this 
manifold,  this  indicates  that a segment  exists  opposite the  distinguished pixel with  the 
correct  orientation. If the  distinguished pixel also lies on a segment with  the  appropriate 
orientation,  then a  pair of parallel  segments  has been found. 

Since the distinguished pixel completely specifies the location of one of the lines in  the 
errorless  case,  the  remaining degree of freedom is the  distance of second  line. The mani- 
fold we are  projecting  onto is thus a curve  in  the three-dimensional parameter  space  that 
can  be  parameterized by the  distance  from  the line given  by the  (oriented)  distinguished 
pixel. In  this case, the  projection is simply  the range of the possible  distances  between 
the two parallel lines that  are  consistent  with  the  pair of pixels. Note  that  this  distance 
may  be  negative, since we do  not know which of the lines, if either,  the  distinguished 
pixel lies on. 

In  order  to  determine  the  projection discussed above, we consider the  set of orienta- 
tions  that  are consistent with  both of the pixels up  to  the given error  boundaries.  Each 
orientation in this  set yields a distance between the  pair of parallel lines. If the two 
pixels under consideration have coordinates (xi ,  yi) and (zj, yj), then a pair of parallel 
lines  passing through  them  with  orientation 8 are given by: 

and 



The  perpendicular  distance between the lines is: 

The feasible range of such  distances  can  be  determined by considering the  minimum 
and  maximum  orientation consistent with  the two pixels and, if the  set of consistent 
orientations for the parallel lines contains the  orientation of the line perpendicular to  the 
segment  between the pixels, the (signed) distance between the pixels. To  this  range we 
must also add  the allowable localization error in the positions of the pixels. This final 
range is our  projection of the pose space that is consistent  with the  pair of pixels onto 
the curve  in the  parameter space  consistent  with  the  distinguished  pixel. 

The  distances at which many of these  projections  intersect yield the positions of the 
opposing  segments that  are parallel to  the  orientation of the  distinguished pixel. We 
detect  these  segments by discretizing the  range of possible distances  into 1 pixel wide 
intervals  and  maintaining a counter for each  interval. For each of the  distance  ranges 
that is given by a pair of pixels, the  counter is incremented for each interval that  the 
range overlaps.  After the distinguished  pixel has been paired  with  each additional pixel 
in  some  neighborhood, we look for peaks  in the counter  array. 

In  addition to  seeking the segments that oppose  the distinguished  pixel, we use  the 
error  bounds to  determine how many of the pixels lie on the same  segment as the  distin- 
guished pixel. If both pixels have orientations  that  are consistent with  being  perpendic- 
ular  to  the  segment between the pixels, then  the pixels are considered to  be  parallel  up 
to  the localization  error  and  this  count  is  incremented. 

Finally, we must have some criterion  determining which parallel  segments are  output. 
We report  all of the parallel  segments for which both  the count on  the  number of pixels 
on a segment with  the distinguished pixel and  the count on the  number of pixels on some 
segment  parallel to  this segment surpasses  some  predetermined  fraction of the  estimated 
ordnance  length  in  the image at this  position (see below). 

4.1. Placing Bounds on the Ordnance Size 

In  order  to  improve  the efficiency of the  method  and reduce the  rate of false positives, 
we use the  stereo  range information to place bounds on the size of the  ordnance given 
the hypothesis that  the distinguished pixel lies on  the occluding contour of the  ordnance 
body.  The  length  and  width  estimate for the ordnance  (assuming a frontal view) are 
given by: 

and 



where R is the  range  estimate of the  ordnance (given by the  stereo range information at 
the distinguished  pixel), 8 is the  orientation  along  the  ordnance axis  in the  image,  Ltrue 
and  Wtrue  are  the  true  length  and  width of the ordnance,  and H and V are  horizontal 
and  vertical scaling factors in the image.* 

When  the  ordnance is oriented  such that  the axis is not horizontal in  the  image,  the 
length of the  ordnance  in  the image will be less than Limage due  to  foreshortening.  The 
foreshortened  length is estimated  under  the  assumption  that  the  ordnance lies flat on a 
horizontal  ground  plane as follows: 

Lforeshortened = Limage ($ - #> lcos '1) , 

where H is the height of the  cameras above the  ground plane. 

This  information is used to determine  what  threshold should  be used in  detecting  the 
parallel  lines.  In  addition, we use this  information  to improve the  performance of the 
method. For each  distinguished pixel, we need only  consider the  other pixels that  are 
within  dordnance of the distinguished  pixel,  where  dordnance is given by: 

dordnance = p$oreshortened -k wfmage* 

In  addition, only  those  hypotheses  with  width close to Wimage are valid hypotheses,  the 
rest need not  be considered. 

5. RESULTS 

This  method  has  been  applied  to a set of 48 pairs of stereo, greyscale images. These 
images were captured at two locations  near  the  Jet  Propulsion  Laboratory,  using two 
camera  orientations at each  location for a total of four  settings.  In each setting,  the 
cross-product of 4 ordnance  distances (1, 2, 3, and 4 meters)  and 3 ordnance  orientations 
(0", 45", and 90") with  respect  to  the  camera  orientation were imaged.  Relatively  short 
distances were used since an 85"  field-of-view lens was used for this  dataset.  In  practice, 
we expect to use a field-of-view  closer to 30", so the  distance should  scale approximately 
as a factor of 3. 

Overall, 40 of the 48 ordnance  instances were detected  with a total of 18 false  positives. 
All of the false negative  detections  occurred for ordnance at the 90" orientation  and at 
a distance of 3 or 4 meters  (all of these cases failed, while none of the  others  failed). 
The 90" orientation is unfavorable for ordnance recognition since foreshortening of the 
ordnance  results  in fewer edge pixels being  detected  along  the occluding boundary. We 
conclude that these  techniques  are  capable of detecting  the ordnance  as  long as either 

*We  do not assume  aspect ratio of 1:l. 



Figure 4. Examples of recognition  results. (a) Correct  detection at close range.  (b) 
Another  correct  detection at close range.  (c)  Correct  detection at long  range. (d)  Correct 
detection  with a false positive. (e)  Correct  detection  with a false positive. (f)  False 
negative  due to unfavorable orientation  and  distance. 



(1) the  ordnance is not oriented  unfavorably  (nearly  along  the  camera axis) or (2) the 
ordnance is not  far from the  camera.  Figure 4 shows several examples,  including two 
false positives and a false negative. 

6 .  SUMMARY 

We have described a method  to  detect surface-lying BLU-97 ordnance  in a test  range 
using  computer vision. The  method uses range  data from a stereo  pair of cameras  and 
image edge data  to  detect  the cylindrical ordnance in the images. The stereo  range data 
enhances  the edge detection process, allowing the scale of smoothing  and edge detection 
to be  set  adaptively according to  the  range,  and reduces the search  space by placing 
constraints  on  the size of the  ordnance  in  the image. Pairs of parallel  segments  are 
extracted from the edge data corresponding to  the occluding boundaries of the cylinders. 
Good  results  have  been  demonstrated  on  an  initial  test  set of greyscale  imagery. Our 
future  plans  are  to  extend these  techniques to  color imagery, where we can  also  use  the 
ordnance color as a recognition  cue and  more extensive testing on a data  set collected at 
a live-fire test  range. 
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